首页> 外文期刊>journal of applied polymer science >Electron beam effects on polymers: Structure–property behavior of radiation‐cured bis‐GMA
【24h】

Electron beam effects on polymers: Structure–property behavior of radiation‐cured bis‐GMA

机译:Electron beam effects on polymers: Structure–property behavior of radiation‐cured bis‐GMA

获取原文
           

摘要

AbstractStructure–property relationships were investigated for the diglycidly methacrylate derivative of bisphenol‐A crosslinked by electron beam irradiation. This material, commonly called bis‐GMA, is a viscous liquid at room temperature which crosslinks to form a glassy network. The major parameters which were systematically varied in this study were radiation dosage, dose rate, aging time after irradiation, and post‐cure annealing at higher temperatures. Measurements were conducted to quantify the crosslinking reaction and to characterize the physical properties of the resulting networks. Solvent extraction was done to determine the relative degree of network formation through the equilibrium swelling and the gel weight fraction after drying. Another method utilized FTIR to monitor the disappearance of double bonds as the crosslinking reaction proceeded. To characterize the thermal and physical properties, differential scanning calorimetry (DSC) and dynamic mechanical spectroscopy were utilized. Network density was found proportional to the irradiation dosage, with an upper limit reached above some critical dosage. Over the range of dose rate studied, this variable was not found to influence the degree of cure greatly. The crosslinking reaction became diffusion limited as vitrification occurred. These phenomena were discussed in terms of the well‐known time–temperature–transformation diagram. Free radicals trapped in these reacting networks due to vitrification exhibited a finite lifetime. Post‐curing could be achieved by annealing at a temperature above theTgof the initially cured network, as shown by the increase of the glass transition temperature from both DSC and dynamic mec

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号