...
首页> 外文期刊>Journal of thermal analysis and calorimetry >Study of hydration of two cements of different strengths
【24h】

Study of hydration of two cements of different strengths

机译:Study of hydration of two cements of different strengths

获取原文
获取原文并翻译 | 示例
           

摘要

Main hydration products of two cement pastes, i.e. CSH-gel, portlandite (P) (and specific surface S) were studied by static heating,a nd by SEM, TEM and XRD, as a function of cement strength (C-33 and C-43) hydration time (th) and subsequent hydration in water vapour. Total change in mass on hydration and air drying, ΔM_0, increased with strength of cement paste and with hydration time. Content of water escaping at 110 to 220 ℃, defined as water bound with low energy, mainly interlayer and hydrate water, was independent on cement strength but its content increased with (th). Content of chemically bound (zeolitic) water in CSH-ge, escaping at 220-440 ℃, was slightly dependent on strength and increased with (th). It was possibly derived from the dehydroxylation of CSH-gale nd AFm phase. Portlandite water, escaping at 400-500 ℃, was independent on cement strength and was higher on longer hydration. Large P crystals were formed in the weaker cement paste C-33. Smaller crystals were formed in C-43 but theer increased with (th). Carbonate formatted on contact with air (calcite, vaterite and aragonite), decomposed in cement at 600-700 ℃. It was high in pastes C-33(1 month) and C-43(1 month), i.e. 5.7 and 3.3, respectively; it was less than 1 after 6 hydration months (low sensitivity to carbonation) in agreement with the XRD study showing carbonates in the air dry paste (1 month), and its absence on prolonged hydration (6 months) and on acetone treatment. Water vapour treatment of (6 months) pastes or wetting-drying increased this sensitivity. Nanosized P-crystals, detected by TEM, could contribute to the cement strength; carbonate was observed on the rims of gel clusters.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号