...
首页> 外文期刊>Geophysics: Journal of the Society of Exploration Geophysicists >Modeling sensitivity of 3D, 9-C wide azimuth data to changes in fluid content and crack density in cracked reservoirs
【24h】

Modeling sensitivity of 3D, 9-C wide azimuth data to changes in fluid content and crack density in cracked reservoirs

机译:Modeling sensitivity of 3D, 9-C wide azimuth data to changes in fluid content and crack density in cracked reservoirs

获取原文
获取原文并翻译 | 示例
           

摘要

The volume density of cracks and the fluids contained in them are salient aspects of characterization of cracked reservoirs. Thus, it is of practical importance to investigate whether varia-tions in these reservoir properties are detectable in seismic obser-vations. Eighth-order staggered-grid, 3D finite-difference simu-lations generate nine-component amplitude variations with off-set and azimuth (AVOAZ) for reflections from the top of a verti-cally cracked zone embedded in an isotropic host. The T-matrix method is used to calculate elastic stiffness tensors. Responses for various crack densities and fluid contents show sensitivity to the spatial orientation of, and variation in, anisotropy. In isotro-pic media, when source and receiver components have the same orientation (such as XX and YY), reflection amplitude contours align approximately perpendicular to the particle motion. Mixed components (such as XY and YX) have amplitude patterns that are symmetrical pairs of the same, or opposite, polarity on either side of the diagonal of the 9-C response matrix. In anisotropic media, AVOAZ data show the same basic patterns and symmetries as for isotropic media but with a superimposed tendency for alignment parallel to the strike of the vertical cracks. The data contain combined effects related to the source, receiver, and crack orientations. The sensitivity of data to changes in fluid content is quantified by comparing the differences between responses to various fluid conditions, to the maximum amplitude of oil-filled crack responses. For a crack density of 0.1, amplitude differences are —10 for oil-dry and 9 for oil-brine. The corre-sponding values for S-wave reflections are —8 for oil-dry and ~7 for oil-brine. Amplitude changes caused by changing the oil-filled crack density from 0.1 to 0.2 are ~16 for P-wave reflections and ~31 for S-wave reflections. These differences are visible in AVOAZ data and are potentially diagnostic for reservoir characterization.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号