...
首页> 外文期刊>Plant and cell physiology >Characterization of Two HKT1; 4 Transporters from Triticum monococcum to Elucidate the Determinants of the Wheat Salt Tolerance Nax1 QTL
【24h】

Characterization of Two HKT1; 4 Transporters from Triticum monococcum to Elucidate the Determinants of the Wheat Salt Tolerance Nax1 QTL

机译:Characterization of Two HKT1; 4 Transporters from Triticum monococcum to Elucidate the Determinants of the Wheat Salt Tolerance Nax1 QTL

获取原文
获取原文并翻译 | 示例
           

摘要

TmHKT1;4-A1 and TmHKT1;4-A2 are two Na+ transporter genes that have been identified as associated with the salt tolerance Nax1 locus found in a durum wheat (Triticum turgidum L. subsp. durum) line issued from a cross with T. monococcum. In the present study, we were interested in getting clues on the molecular mechanisms underpinning this salt tolerance quantitative trait locus (QTL). By analyzing the phylogenetic relationships between wheat and T. monococcum HKT1;4-type genes, we found that durum and bread wheat genomes possess a close homolog of TmHKT1;4-A1, but no functional close homolog of TmHKT1;4-A2. Furthermore, performing real-time reverse transcription-PCR experiments, we showed that TmHKT1;4-A1 and TmHKT1;4-A2 are similarly expressed in the leaves but that TmHKT1;4-A2 is more strongly expressed in the roots, which would enable it to contribute more to the prevention of Na+ transfer to the shoots upon salt stress. We also functionally characterized the TmHKT1;4-A1 and TmHKT1;4-A2 transporters by expressing them in Xenopus oocytes. The two transporters displayed close functional properties (high Na+/K+ selectivity, low affinity for Na+, stimulation by external K+ of Na+ transport), but differed in some quantitative parameters: Na+ affinity was 3-fold lower and the maximal inward conductance was 3-fold higher in TmHKT1;4-A2 than in TmHKT1;4-A1. The conductance of TmHKT1;4-A2 at high Na+ concentration (> 10 mM) was also shown to be higher than that of the two durum wheat HKT1;4-type transporters so far characterized. Altogether, these data support the hypothesis that TmHKT1;4-A2 is responsible for the Nax1 trait and provide new insight into the understanding of this QTL.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号