首页> 外文期刊>journal of applied polymer science >Prediction and measurement of fatigue of lifetime distributions for elastomeric biomaterials
【24h】

Prediction and measurement of fatigue of lifetime distributions for elastomeric biomaterials

机译:Prediction and measurement of fatigue of lifetime distributions for elastomeric biomaterials

获取原文
           

摘要

AbstractSynthetic polymer biomaterials being considered for cardiovascular applications must perform under conditions of large cyclic deformations for long lifetimes. In designing with these materials and eventually qualifying them clinically, it would be extremely helpful to be able to predict the fatigue lifetimes accurately and reliably. In this article a calculational format is presented which predicts the lifetime distribution function for elastomeric sheets undergoing tension–tension fatigue. From a knowledge of the intrinsic tensile strength distribution and the effect of an “equivalent” edge flaw size on the tensile strength, the inherent flaw size distribution is determined. A tearing energy concept is utilized to determine the flaw growth law constants. Each of these three short‐term tests provides a pair of constants which, taken together, permit calculation of the fatigue lifetime distribution. When compared using Kolmogoroff statistics, experimental tensile–tensile fatigue results at 0.01 cps agreed well with the theoretically predicted lifetime distribution

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号