...
首页> 外文期刊>The bone & joint journal. >Is greater than 145° of deep knee flexion under weight-bearing conditions safe after total knee arthroplasty? A FLUOROSCOPIC ANALYSIS OF JAPANESE-STYLE DEEP KNEE FLEXION
【24h】

Is greater than 145° of deep knee flexion under weight-bearing conditions safe after total knee arthroplasty? A FLUOROSCOPIC ANALYSIS OF JAPANESE-STYLE DEEP KNEE FLEXION

机译:Is greater than 145° of deep knee flexion under weight-bearing conditions safe after total knee arthroplasty? A FLUOROSCOPIC ANALYSIS OF JAPANESE-STYLE DEEP KNEE FLEXION

获取原文
获取原文并翻译 | 示例
           

摘要

We investigated the characteristics of patients who achieved Japanese-style deep flexion (seiza-sitting) after total knee replacement (TKR) and measured three-dimensional positioning and the contact positions of the femoral and tibial components. Seiza-sitting was achieved after surgery by 23 patients (29 knees) of a series of 463 TKRs in 341 patients. Pre-operatively most of these patients were capable of seiza-sitting, had a lower body mass index and a favourable attitude towards the Japanese lifestyle (27 of 29 knees). According to two-/three-dimensional image registration analysis in the seiza-sitting position, flexion, varus and internal rotation angles of the tibial component relative to the femoral component had means of 148° (sd 8.0), 1.9° (SD 3.2) and 13.4° (sd 5.9), respectively. Femoral surface contact positions tended to be close to the posterior edge of the tibial polyethylene insert, particularly in the lateral compartment, but only 8.3 (two of 24) of knees showed femoral subluxation over the posterior edge. The mean contact positions of the femoral cam on the tibial post were located 7.8 mm (sd 1.5) proximal to the lowest point of the polyethylene surface and 5.5 mm (sd 0.9) medial to the centre of the post, indicating that the post-cam contact position translated medially during seiza-sitting, but not proximally. Collectively, the seiza-sitting position seems safe against component dislocation, but the risks of posterior edge loading and breakage of the tibial polyethylene post remain.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号