首页> 外文期刊>Estuarine coastal and shelf science >Pinctada margaritifera responses to temperature and pH: Acclimation capabilities and physiological limits
【24h】

Pinctada margaritifera responses to temperature and pH: Acclimation capabilities and physiological limits

机译:Pinctada margaritifera responses to temperature and pH: Acclimation capabilities and physiological limits

获取原文
获取原文并翻译 | 示例
           

摘要

The pearl culture is one of the most lucrative aquacultures worldwide. In many South Pacific areas, it depends on the exploitation of the pearl oyster Pinctada margaritifera and relies entirely on the environmental conditions encountered in the lagoon. In this context, assessing the impact of climatic stressors, such as global warming and ocean acidification, on the functionality of the resource in terms of renewal and exploitation is fundamental. In this study, we experimentally addressed the impact of temperature (22, 26, 30 and 34 degrees C) and partial pressure of carbon dioxide pCO(2) (294, 763 and 2485 atm) on the biomineralization and metabolic capabilities of pearl oysters. While the energy metabolism was strongly dependent on temperature, results showed its independence from pCO(2) levels; no interaction between temperature and pCO2 was revealed. The energy metabolism, ingestion, oxygen consumption and, hence, the scope for growth (SFG) were maximised at 30 degrees C and dramatically fell at 34 degrees C. Biomineralization was examined through the expression measurement of nine mantle's genes coding for shell matrix proteins involved in the formation of calcitic prisms and/or nacreous shell structures; significant changes were recorded for four of the nine (Pmarg-Nacrein AI, Pmarg-MRNP34, Pmarg-Prismalin 14 and Pmarg-Aspein). These changes showed that the maximum and minimum expression of these genes was at 26 and 34 degrees C, respectively. Surprisingly, the modelled thermal optimum for biomineralization (ranging between 21.5 and 26.5 degrees C) and somatic growth and reproduction (28.7 degrees C) appeared to be significantly different. Finally, the responses to high temperatures were contextualised with the Intergovernmental Panel on Climate Change (IPCC) projections, which highlighted that pearl oyster stocks and cultures would be severely threatened in the next decade. (C) 2016 Elsevier Ltd. All rights reserved.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号