...
首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Quadratically consistent one-point (QC1) quadrature for meshfree Galerkin methods
【24h】

Quadratically consistent one-point (QC1) quadrature for meshfree Galerkin methods

机译:Quadratically consistent one-point (QC1) quadrature for meshfree Galerkin methods

获取原文
获取原文并翻译 | 示例
           

摘要

A robust and efficient integration method, named quadratically consistent one-point (QC1) scheme, which evaluates the Galerkin weak form only at the centers of background triangle elements (cells) is proposed for meshfree methods using quadratic basis. The strain at the evaluation points is approximated by corrected (smoothed) nodal derivatives which are determined by a discrete form of the divergence theorem between nodal shape functions and their derivatives in Taylor's expansion. We prove that such smoothed nodal derivatives also meet the differentiation of the approximation consistency (DAC). The same Taylor's expansion is applied to the weak form and the smoothed nodal derivatives are used to compute the stiffness matrix. The proposed QC1 scheme can pass both the linear and the quadratic patch tests exactly in a numerical sense. Several examples are provided to demonstrate its better numerical performance in terms of convergence, accuracy, efficiency and stability over other one-point integration methods in the meshfree literature, especially its superiority over the existing linearly consistent one-point (LC1) quadratures.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号