首页> 外文期刊>Journal of mechanical design >An Approach to Power-Flow and Static Force Analysis in Multi-Input Multi-Output Epicyclic-Type Transmission Trains
【24h】

An Approach to Power-Flow and Static Force Analysis in Multi-Input Multi-Output Epicyclic-Type Transmission Trains

机译:An Approach to Power-Flow and Static Force Analysis in Multi-Input Multi-Output Epicyclic-Type Transmission Trains

获取原文
获取原文并翻译 | 示例
           

摘要

This study contributes to the development of a systematic methodology for the torque and power-flow analyses of multi-input multi-output (MIMO) epicyclic gear mechanisms (EGMs) with or without reaction link based on the concept of fundamental circuit. The studies on power-flow analysis of EGMs are mostly done in the context of efficiency formulations. In the opinion of the authors, the design process of the MIMO mechanism involves not only finding the configuration that provides the correct velocity ratios but also meeting other kinematic requirements and ensuring that the two inputs have a mutually constructive nature. To demonstrate the analysis, a new motor/generator integrated hybrid transmission design is used to show how the torque acting on each link of an epicyclic gear train (EGT) can be systematically solved in terms of input torque(s) and/or controlled output torque. This paper presents a unification of kinematic and torque balance approaches for the analysis of MIMO epicyclic-type transmission trains. The results presented are meant to deepen the knowledge as to how and why a MIMO epicyclic-type transmission should operate in a certain way under the given conditions. In the process, this paper explores the theoretical bases of operation of the Toyota Hybrid System and the root cause of some confusion in the field of EGTs.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号