首页> 外文期刊>paleoceanography >Nannofossils and superplumes: The Early Aptian “nannoconid crisis”
【24h】

Nannofossils and superplumes: The Early Aptian “nannoconid crisis”

机译:Nannofossils and superplumes: The Early Aptian “nannoconid crisis”

获取原文
           

摘要

A group of calcareous nannoplankton named nannoconids experienced a crisis in the early Aptian and recovered only later in the late Aptian after a period of virtual absence. Although no extinctions occurred, the widespread nature of the “nannoconid crisis” suggests a global causal factor. This crisis is recorded within theChiastozygus litterariusnannofossil andGlobigerinelloides blowiplanktonic foraminiferal zones, postdates magnetic chronozone M0 by approximately 300 kyr, and precedes the oceanic anoxic subevent 1a and associated δ13C anomaly by some 40–100 kyr. Selective dissolution and anoxia cannot explain the crisis, because nannoconids are dissolution‐resistant forms and their crisis clearly precedes the deposition of anoxic sediments. At least 1 m.y. prior to the “nannoconid crisis,” the onset of a nannoplankton speciation event may be the response of nannofloras to a major rise in relative sea level. The “nannoconid crisis” seems to be synchronous with the early Aptian volcanic eruptions in the Pacific Ocean. Hence calcareous nannoplankton were severely affected by the “superplume” volcanic episode. The coccolithophorid bloom/nannoconid crisis was possibly induced by the excessive CO2levels in the atmosphere and/or caused by changes in nutrient content of oceanic surface waters. Fertility was enhanced by rapid turnover of nutrients due to the abnormal volcanic activity and accelerated transfer of nutrients from the continents into the oceans under warm and humid conditions of the mid‐Cretaceous greenhouse climate. The “nannoconid crisis” may represent a competition between phytoplankton groups for nutrients or, more likely, competition between different calcareous nannoplankton. The biologic affinity and mode of life ofNannoconusare unknown, because there is no modern analog of this genus. However, comparison of Lower Cretaceous nannofossil assemblages with modern nannoplankton cummunities suggests that nannoconids, like extantFlorisphaera profunda, possibly inhabited the lower photic zone. Concentrations of nutrients in the upper euphotic zone may have triggered blooms of coccolithophorids and nannoconid depletion. This model implies that the “nannoconid crisis” is the result of an abrupt, major change in the structure of surface waters caused directly or indirectly by the “superplume.” The adjustments of the biosphere to the new paleoceanographic and climatic conditions required some 40–100 kyr before changing into abnormally high primary productivity and deposition of organic carbon‐rich sediments with dino

著录项

  • 来源
    《paleoceanography》 |1994年第3期|483-501|共页
  • 作者

    Elisabetta Erba;

  • 作者单位
  • 收录信息
  • 原文格式 PDF
  • 正文语种 英语
  • 中图分类
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号