首页> 外文期刊>journal of applied polymer science >Chemorheology of thermosetting resins. I. The chemorheology and curing kinetics of unsaturated polyester resin
【24h】

Chemorheology of thermosetting resins. I. The chemorheology and curing kinetics of unsaturated polyester resin

机译:Chemorheology of thermosetting resins. I. The chemorheology and curing kinetics of unsaturated polyester resin

获取原文
           

摘要

AbstractThe rheological properties and curing kinetics of a general‐purpose polyester resin have been determined during isothermal cure. Both steady and oscillatory shearing flow properties were determined using a cone‐and‐plate rheometer, and the curing kinetics were determined using a differential scanning calorimeter (DSC). It was found that, as cure progresses, the steady shear viscosity increases very rapidly with cure time at all shear rates investigated, and normal forces shownegativevalues at low shear rates andpositivevalues at high shear rates. The observednegativenormal forces are believed to result from material shrinkage during cure, andpositivenormal forces from the deformation of large molecules, formed by crosslinking reactions during cure. Note that, in a cone‐and‐plate rheometer, the shrinkage force acts in the directionoppositeto that of normal forces. It is, therefore, concluded that extreme caution is needed in the interpretation of normal force measurements with thermosetting resins, subjected to steady shearing flow. Dynamic measurements seem to offer some insight on the onset of gel formation. More specifically, we have found that, when the unsaturated polyester resin was cured at a fast rate, the time at which a maximum in the loss modulusG”occurs coincides reasonably well with the timetη∞at which the steady shear viscosityηapproaches infinity. However, at a slow rate of cure, the time at which tanδequals unity agrees fairly well withtη∞. DSC measurement has permitted us to determine the degree of cure as a function of cure time and the kinetic parameters in an empirical expression for the curing kinetics advanced by Kamal and co‐workers. By combining the rheological and DSC measurements, we have constructed plots describing how the viscosity increases with the degree of cure, at various values of isotherm

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号