首页> 外文期刊>Journal of mechanical design >An Approach to Identify Six Sigma Robust Solutions of Multi/Many-Objective Engineering Design Optimization Problems
【24h】

An Approach to Identify Six Sigma Robust Solutions of Multi/Many-Objective Engineering Design Optimization Problems

机译:An Approach to Identify Six Sigma Robust Solutions of Multi/Many-Objective Engineering Design Optimization Problems

获取原文
获取原文并翻译 | 示例
           

摘要

In order to be practical, solutions of engineering design optimization problems must be robust, i.e., competent and reliable in the face of uncertainties. While such uncertainties can emerge from a number of sources (imprecise variable values, errors in performance estimates, varying environmental conditions, etc.), this study focuses on problems where uncertainties emanate from the design variables. While approaches to identify robust optimal solutions of single and multi-objective optimization problems have been proposed in the past, we introduce a practical approach that is capable of solving robust optimization problems involving many objectives building on authors' previous work. Two formulations of robustness have been considered in this paper, (a) feasibility robustness (FR), i.e., robustness against design failure and (b) feasibility and performance robustness (FPR), i.e., robustness against design failure and variation in performance. In order to solve such formulations, a decomposition based evolutionary algorithm (DBEA) relying on a generational model is proposed in this study. The algorithm is capable of identifying a set of uniformly distributed nondominated solutions with different sigma levels (feasibility and performance) simultaneously in a single run. Computational benefits offered by using polynomial chaos (PC) in conjunction with Latin hypercube sampling (LHS) for estimating expected mean and variance of the objective/constraint functions has also been studied in this paper. Last, the idea of redesign for robustness has been explored, wherein selective component(s) of an existing design are altered to improve its robustness. The performance of the strategies have been illustrated using two practical design optimization problems, namely, vehicle crash-worthiness optimization problem (VCOP) and a general aviation aircraft (GAA) product family design problem.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号