...
首页> 外文期刊>european journal of neuroscience >Selective Depletion of Clear Synaptic Vesicles and Enhanced Quantal Transmitter Release at Frog Motor Nerve Endings Produced by Trachynilysin, a Protein Toxin Isolated from Stonefish (Synanceia trachynis) Venom
【24h】

Selective Depletion of Clear Synaptic Vesicles and Enhanced Quantal Transmitter Release at Frog Motor Nerve Endings Produced by Trachynilysin, a Protein Toxin Isolated from Stonefish (Synanceia trachynis) Venom

机译:Selective Depletion of Clear Synaptic Vesicles and Enhanced Quantal Transmitter Release at Frog Motor Nerve Endings Produced by Trachynilysin, a Protein Toxin Isolated from Stonefish (Synanceia trachynis) Venom

获取原文
           

摘要

AbstractOur previous observation that low concentrations of stonefish(Synanceia trachynis)venom elicit spontaneous quantal acetylcholine release from vertebrate motor nerve terminals prompted our present study to purify the quantal transmitter‐releasing toxin present in the venom and to characterize the toxin's ability to alter the ultrastructure and immunoreactivity of frog motor nerve terminals. Fractionation ofS. trachynisvenom by sequential anion exchange fast protein‐liquid chromatography (FPLC) and size‐exclusion FPLC yielded a highly purified preparation of a membrane‐perturbing (haemolytic) protein toxin, named trachynilysin. Trachynilysin (2–20 μg/ml) significantly increased spontaneous quantal acetylcholine release from motor endings, as detected by recording miniature endplate potentials from isolated frog cutaneous pectoris neuromuscular preparations. Ultrastructural analysis of nerve terminals in which quantal acetylcholine release was stimulated to exhaustion by 3 h exposure to trachynilysin revealed swelling of nerve terminals and marked depletion of small clear synaptic vesicles. However, trachynilysin did not induce a parallel depletion of large dense‐core vesicles. Large dense‐core vesicles contained calcitonin gene‐related peptide (CGRP), as revealed by colloidal gold immunostaining, and trachynilysin‐treated nerve endings exhibited CGRP‐like immunofluorescence similar to that of untreated terminals. Our results indicate that the ability of stonefish venom to elicit spontaneous quantal acetylcholine release from vertebrate motor nerve terminals is a function of trachynilysin, which selectively stimulates the release of small clear synaptic vesicles and impairs the recycling of small clear synaptic vesicles but does not affect the release of large dense‐core vesicles. Trachynilysin may be a valuable tool for use in other secretory terminals to discriminate between neurotransmitter an

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号