...
首页> 外文期刊>Geomicrobiology journal >Effects of Bioavailable Heavy Metal Species, Arsenic, and Acid Drainage from Mine Tailings on a Microbial Community Sampled Along a Pollution Gradient in a Freshwater Ecosystem
【24h】

Effects of Bioavailable Heavy Metal Species, Arsenic, and Acid Drainage from Mine Tailings on a Microbial Community Sampled Along a Pollution Gradient in a Freshwater Ecosystem

机译:Effects of Bioavailable Heavy Metal Species, Arsenic, and Acid Drainage from Mine Tailings on a Microbial Community Sampled Along a Pollution Gradient in a Freshwater Ecosystem

获取原文
获取原文并翻译 | 示例
           

摘要

Sediment and water samples representing a pollution gradient in a long, narrow lake polluted at one end by heavy metals, arsenic, and acid drainage from mine tailings, together with samples from an unpolluted reference lake, were analyzed to determine effects of pollutants on the microbial community of the polluted lake. Ribosomal ribonucleic acid, fatty acid, and phospholipid analyses, along with assays of CO2 production, denitrification, and enzyme activities, were performed to characterize the microflora; and environmental conditions were defined by various physicochemical analyses, including determination of bioavailable metal species. Mine waste pollution fostered the growth of Holophagal Acidobacteria, green sulphur bacteria, and -Proteobacteria but inhibited numerous other types of microorganisms, reducing the overall productivity, biomass, and biodiversity of the microflora. The beneficial effects imply toleration of pollutants, suppression of competing or antagonistic species, and utilization of biogenic sulphide; and the toxic effects are attributable to bioavailable metals, arsenic, and sulphuric acid produced by oxidation of sulphides. The bioavailability and toxicity of sediment-bound metals were evidently increased by acidification, elevation of sediment Eh, and inhibition of metal-immobilizing bacteria by pollutants but were decreased by metal-scavenging oxyhydroxides, sulphide, and organic matter. Metal toxicity also depended on specific metal properties (e.g., electronegativity), providing a basis for inferring mechanisms of toxicity and oxidation states of metals and explaining differences in relative toxicity. The pollutants harmed the ecosystem as a whole by inhibiting microorganisms that performed crucial ecological functions, notably oxygen-releasing photosynthesis, decomposition and humification of organic matter, nutrient recycling, and control of metal availability.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号