...
首页> 外文期刊>neurosurgery >A Mathematical Model for the Mechanics of Saccular Aneurysms
【24h】

A Mathematical Model for the Mechanics of Saccular Aneurysms

机译:A Mathematical Model for the Mechanics of Saccular Aneurysms

获取原文
           

摘要

NA;We constructed and discussed a mathematical model of intracranial saccular aneurysms based on the static mechanics of hollow vessels and were able to focus on three variables that are fundamental to the process of enlargement and repture of these lesions. They are blood pressure lpar;Prpar;, wall strength lpar;sigma;rpar;, and total wall substance lpar;Vngr;Trpar;, which, if assigned values of 150 mm Hg, 10 MPa, and 1.0 mm3, lead to modelhyphen;predicted values of 8 mm for the diameter and 40 mgr;m for the wall thickness for the critical geometry of aneurysmal rupture. These are quantitatively similar to published measurements. The model is based on the assumption of a uniform thin spherical shell for the saccular aneurysm. The interrelationship of the variables, expressed in the equation for critical size at repture lpar;dcrpar; lpar;i.e., dcequals; lsqb;4sigma;VTsol;lpar;pgr;Prpar;rsqb;frac13;rpar;, draws attention to the need for quantitative studies on aneurysmal geometry and on the stereology of the structural fraction of the aneurysmal wall. We concluded that tissue recruitment from around the initial site or hypertrophy of the wall tissue is commonly involved in the aneurysmal process. We identify the paradox of elastic stiffness and stability, which are characteristic of autopsy specimens in the laboratory, in contrast to plastic behavior and irreversible strain, which are essential to the natural process of enlargement of saccular aneurysms. lpar;Neurosurgery17colon;291hyphen;295, 1985rpar;

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号