...
首页> 外文期刊>cell and tissue research >The capacity of central and peripheral catecholaminergic neurons to innervate the pineal organ and cerebral cortex of the rat: in vitro immunohistochemical observations
【24h】

The capacity of central and peripheral catecholaminergic neurons to innervate the pineal organ and cerebral cortex of the rat: in vitro immunohistochemical observations

机译:The capacity of central and peripheral catecholaminergic neurons to innervate the pineal organ and cerebral cortex of the rat: in vitro immunohistochemical observations

获取原文
           

摘要

The locus coeruleus (LC) or superior cervical ganglion (SCG) of neonatal rats were co-cultured either with the pineal organ or cerebral cortex (CX) to investigate the innervating capacity of central and peripheral catacholamine neurons under these experimental conditions. After 2 weeks of co-culturing, cultures were fixed for tyrosine hydroxylase (TH) immunohistochemistry to examine the distribution of catecholamine neurons and their fibers. Glial fibrillary acidic protein and fibronectin immunohistochemistry was performed to determine the cell types proliferating around the explants. In LC/CX co-cultures, numerous astrocytes spread between the two explants, and TH-immunoreactive neurites were generally seen to invade CX explants. In contrast, neurite extension from LC to pineal explants occurred only when a glial cell sheet grew between the two explants, and when the pineal explants were not surrounded by a tight fibronectin-positive cell layer. Neurites of the SCG usually invaded both CX and pineal explants, regardless of the existence of glial or non-glial cell layer. These results indicate that central and peripheral catecholamine neurites have the potential of invading both the cortex and pineal, although they are distributed only in particular regions of the intact brain. The distribution of LC neurites, however, seems to be profoundly affected by the cell types spreading around the explants; glial cells appear to support LC neurite extension, whereas non-glial cells appear to inhibit it.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号