首页> 外文期刊>journal of applied polymer science >Effects of mechanical drawing on gas transport in an emulsion acrylic multipolymer
【24h】

Effects of mechanical drawing on gas transport in an emulsion acrylic multipolymer

机译:Effects of mechanical drawing on gas transport in an emulsion acrylic multipolymer

获取原文
           

摘要

AbstractA study was conducted on the gas sorption and transport properties of a multiphase commercial acrylic polymer trade‐named Korad ACV before and after subjecting the polymer to mechanical drawing operations. The Korad system is an emulsion‐polymerized amorphous composite comprised of a glassy, predominantly PMMA matrix phase and a ply(butyl acrylate)‐dispersed phase surrounded by a PMMA/PBA copolymer shell. Large increases (up to eightfold) in permeabilityPto several gases were observed upon drawing Korad. The observed changes in the permeability to He, Ar, N2, and CH4on drawing were correlated with the draw ratio, drawing temperature, and molecular diameter of the gas penetrant. Most of the increase in permeability occurred at low draw ratios (1–2). The increases inPwere most dramatic for drawing temperatures below or near theTgof the matrix phase (about 90°C) and were quite small for drawing temperatures 30°C or more above the matrixTg. The extent of the permeability increase also depended on the gas, being greatest for CH4and essentially imperceptible for He. The changes in permeability behavior were interpreted in terms of a morphological transformation in the phase of the drawn Korad, which causes the originally dispersed rubber particles to assume a more continuous character. The behavior of the composite was modeled by the Takayanagi and Nielson treatments of two‐phase composite systems. Volumetric, thermal, mechanical, and viscoelastic properties were measured for the as‐received and processed Korad films to elucidate physical changes in the

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号