...
首页> 外文期刊>cell and tissue research >Effect of cytochalasin D on the adhesion of a neuroblastoma x glioma cell line (NG108-15) to laminin and plastic substrates
【24h】

Effect of cytochalasin D on the adhesion of a neuroblastoma x glioma cell line (NG108-15) to laminin and plastic substrates

机译:Effect of cytochalasin D on the adhesion of a neuroblastoma x glioma cell line (NG108-15) to laminin and plastic substrates

获取原文
           

摘要

Adhesion of the neuronal cell surface to its underlying substrate plays an important role in neurite outgrowth in vitro. I have investigated the adhesive basis for neurite outgrowth in the presence of cytochalasin D, a disruptor of actin-containing microfilaments, and in the presence of vinblastine, a depolymerizer of microtubules. Scanning electron microscopy shows that cytochalasin D does not alter the branching configuration of filopodia on a laminin substrate, although processes are shorter and tapered distally in the presence of the drug. Using a standard attachment assay for the neuroblastoma x glioma cell line (NG108-15) I show that vinblastine does not influence attachment of NG108-15 cells to either plastic or laminin. Cytochalasin D-treated cells normally attach to high concentrations of a laminin substrate (20 μg/ml). However, when cell are seeded on a laminin substrate at lower concentrations (0.001–10 μg/ml), or on YIGSR, a fragment of laminin, cytochalasin D increases cell attachment. Cytochalasin D increases attachment in a dose-dependent manner when cells are seeded on plain polystyrene plastic, so that the number of cells attached to plastic in 1 μM cytochalasin D is similar to the number attached to laminin (20 μg/ml). Combining low concentrations of cytochalasin D and laminin results in greater attachment than with either agent alone. Mild trypsinization of the cell surface reduces the CD-enhanced attachment to plastic, indicating that a protein on the cell surface may be involved. The effect of cytochalasin D appears to be cell specific since cytochalasin D does not affect the attachment of a fibroblast cell line (NIH 3T3) to laminin and plastic. I hypothesize that a molecular mechanism is involved in which cytochalasin D promotes attachment by interacting with the cell surface via the actin microfilament s

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号