...
首页> 外文期刊>Environmental Science & Technology: ES&T >Mercury Stable Isotope Fractionation during Reduction of Hg(II) to Hg(0) by Mercury Resistant Microorganisms
【24h】

Mercury Stable Isotope Fractionation during Reduction of Hg(II) to Hg(0) by Mercury Resistant Microorganisms

机译:Mercury Stable Isotope Fractionation during Reduction of Hg(II) to Hg(0) by Mercury Resistant Microorganisms

获取原文
获取原文并翻译 | 示例
           

摘要

Mercury (Hg) undergoes systematic stable isotopic fractionation; therefore, isotopic signatures of Hg may provide a new tool to track sources, sinks, and dominant chemical transformation pathways of Hg in the environment. We investigated the isotopic fractionation of Hg by Hg(II) resistant (Hg{sup}R) bacteria expressing the mercuric reductase (MerA) enzyme. The isotopic composition of both the reactant Hg(II) added to the growth medium and volatilized product (Hg(0)) was measured using cold vapor generation and multiple collector inductively coupled plasma mass spectrometry. We found that exponentially dividing pure cultures of a gram negative strain Escherichia coli JM109/pPB117 grown with abundant electron donor and high Hg(II) concentrations at 37, 30, and 22℃, and a natural microbial consortium incubated in natural site water at 30℃ after enrichment of Hg{sup}R microbes, preferentially reduced the lighter isotopes of Hg. In all cases, Hg underwent Rayleigh fractionation with the best estimates of α{sub}(202/198) values ranging from 1.0013 to 1.0020. In the cultures grown at 37℃, below a certain threshold Hg(II) concentration, the extent of fractionation decreased progressively. This study demonstrates mass-dependent kinetic fractionation of Hg and could lead to development of a new stable isotopic approach to the study of Hg biogeochemical cycling in the environment.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号