...
首页> 外文期刊>Key engineering materials >Surface Properties and Cytocompatibility of Bio-derived Compact Bone as Scaffolds for Tissue Engineering Bone
【24h】

Surface Properties and Cytocompatibility of Bio-derived Compact Bone as Scaffolds for Tissue Engineering Bone

机译:Surface Properties and Cytocompatibility of Bio-derived Compact Bone as Scaffolds for Tissue Engineering Bone

获取原文
获取原文并翻译 | 示例
           

摘要

Many scaffolds are candidates for use in tissue engineering approaches for the repair or replacement of bone defects. Among the scaffolds tested for tissue engineering of bone, bio-derived compact bone scaffold (BDCBS) containing mineralized collagen fibers, phosphorus and calcium, as natural bone does, is one of the most promising candidates for this purpose. To analyze how appropriate the BDCBS would be for tissue engineering purposes, we established an in vitro characterization system to describe the surface properties and cytocompaibility of the scaffold. Surface properties were determined by means of scanning electron microscope and scanning probe microscope. The surface phase was examined with the Fourier transform infrared spectroscopy and X-ray diffraction. Osteoblasts from human embryos were isolated from the periosteum. After in vitro expansion, cells were cultivated on the BDCBS. Real-time cell culture was used to monitor the growth process of cells seeded on the scaffold. Using this in vitro characterization, we were able to demonstrate effective growth of osteoblasts on this scaffold. In summary, BDCBS has the surface characterization similar to a natural bone and also has strong affinity for osteoblast attachment and proliferation, indicating the potential as an effective scaffold used in tissue engineering bone.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号