首页> 外文期刊>journal of chemical physics >Nonadiabatic semiclassical scattering: Atomndash;diatom collisions in selfhyphen;consistent matrix propagator formalism
【24h】

Nonadiabatic semiclassical scattering: Atomndash;diatom collisions in selfhyphen;consistent matrix propagator formalism

机译:Nonadiabatic semiclassical scattering: Atomndash;diatom collisions in selfhyphen;consistent matrix propagator formalism

获取原文
           

摘要

The selfhyphen;consistent matrix propagator method of Laing and Freed is extended to treat semiclassical nonadiabatic scattering in the collinear atomndash;diatom system. Applications are made to a model system in which diabatic surfaces are parallel, so the nonadiabatic transitions are not well localized in space, thereby introducing difficulties in some previous nonadiabatic semiclassical methods. In the selfhyphen;consistent matrix propagator method nonadiabatic transitions occur at the boundaries of Magnus regions, and the relative phases, associated with trajectories undergoing transitions at different boundaries, must accurately be determined. This necessitates the determination of the absolute phases of the uniformized classicalSmatrix, a phase which is unnecessary in single potential surface semiclassical scattering. Semiclassical calculations are compared with full close coupled quantum calculations of Schmalz. The agreement is very good even at relatively low energies. The largest errors enter, as anticipated, for highly classically forbidden transitions whose overall probabilities are, however, rather small. The selfhyphen;consistent matrix propagator method becomes simpler to apply and more accurate as the total energy increases, i.e., as the fully quantum calculations become prohibitively large. The method has the physical appeal that the selfhyphen;consistent trajectories follow essentially adiabatic surfaces in strongly interacting regions and diabatic surfaces in weakly interacting regions, with a selfhyphen;consistent interpolation between these regions.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号