...
首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >High-resolution lesion-mapping strategy links a hot spot in rat insular cortex with impaired expression of taste aversion learning
【24h】

High-resolution lesion-mapping strategy links a hot spot in rat insular cortex with impaired expression of taste aversion learning

机译:High-resolution lesion-mapping strategy links a hot spot in rat insular cortex with impaired expression of taste aversion learning

获取原文
获取原文并翻译 | 示例
           

摘要

Gustatory cortex (GC), an assemblage of taste-responsive neurons in insular cortex, is widely regarded as integral to conditioned taste aversion (CTA) retention, a link that has been primarily established using lesion approaches in rats. In contrast to this prevailing view, we found that even the most complete bilateral damage to GC produced by ibotenic acid was insufficient to disrupt postsurgical expression of a presurgical CTA; nor were such lesions sufficient to disrupt postsurgical acquisition and initial expression of a second CTA. However, some rats with lesions were significantly impaired on these tests. Further examination of all conditioned rats with lesions, regardless of the lesion topography, revealed a significant positive association between damage in the posterior portion of GC and especially within adjacent posterior regions of insular cortex. Accordingly,we developed a high-resolution lesion-mapping program that permitted the overlay of the individual lesion maps from rats with CTA impairments to produce a groupwise aggregate lesion map. Comparison of this map with one derived from the unimpaired counterparts indicated a specific lesion "hot spot" associated with CTA deficits that included the most posterior end of GC and overlying granular layer and encompassed an area provisionally referred to in the literature as visceral cortex. Thus, the detailed mapping of the lesion in behaviorally defined subgroups of rats allowed us to exploit the variability in performance to uncloak an important potential component of the functional topography of insular cortex; such an approach could have general applicability to other brain structure-function endeavors as well.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号