首页> 外文期刊>Environmental Science & Technology: ES&T >Chlortetracycline Detoxification in Maize via Induction of Glutathione S-Transferases after Antibiotic Exposure
【24h】

Chlortetracycline Detoxification in Maize via Induction of Glutathione S-Transferases after Antibiotic Exposure

机译:Chlortetracycline Detoxification in Maize via Induction of Glutathione S-Transferases after Antibiotic Exposure

获取原文
获取原文并翻译 | 示例
           

摘要

Soil contamination with nonmetabolized antibiotics is an emerging environmental concern,especially on agricultural croplands that receive animal manure as fertilizer.In this study,phytotoxicity of chlortetracycline (CTC) antibiotics on pinto beans (Phaseolus vulgaris) and maize (Zea mays) was investigated under controlled conditions.When grown in CTC-treated soil,a significant increase in the activities of the plant stress proteins glutathione S-transferases (GST) and peroxidases (POX) were observed in maize plants,but not in pinto beans.In vitro conjugation reactions demonstrated that the induced GST in maize catalyzed the conjugation of glutathione (GSH) with CTC,producing stable conjugates that were structurally characterized using liquid chromatography/mass spectrometry.The antibiotic-induced GST produced CTC-glutathione conjugate at relative concentrations 2-fold higher than that produced by constitutively expressed GST extracted from untreated maize.On the other hand,GST extracted from pinto beans (both treated and untreated) did not efficiently catalyze glutathione conjugation with CTC.These results suggest that maize is able to detoxify chlortetracycline via the glutathione pathway,whereas pinto beans cannot.This may explain the observed stunted growth of pinto beans after antibiotic treatment.This study demonstrates the importance of plant uptake in determining the fate of antibiotics in soil and their potential phytotoxicity to susceptible plants.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号