...
首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America. >Mechanistic studies of a small-molecule modulator of SMN2 splicing
【24h】

Mechanistic studies of a small-molecule modulator of SMN2 splicing

机译:Mechanistic studies of a small-molecule modulator of SMN2 splicing

获取原文
获取原文并翻译 | 示例
           

摘要

RG-7916 is a first-in-class drug candidate for the treatment of spinal muscular atrophy (SMA) that functions by modulating pre-mRNA splicing of the SMN2 gene, resulting in a 2.5-fold increase in survival of motor neuron (SMN) protein level, a key protein lacking in SMA patients. RG-7916 is currently in three interventional phase 2 clinical trials for various types of SMA. In this report, we show that SMN-C2 and -C3, close analogs of RG-7916, act as selective RNA-binding ligands that modulate pre-mRNA splicing. Chemical proteomic and genomic techniques reveal that SMN-C2 directly binds to the AGGAAG motif on exon 7 of the SMN2 pre-mRNA, and promotes a conformational change in two to three unpaired nucleotides at the junction of intron 6 and exon 7 in both in vitro and in-cell models. This change creates a new functional binding surface that increases binding of the splicing modulators, far upstream element binding protein 1 (FUBP1) and its homolog, KH-type splicing regulatory protein (KHSRP), to the SMN-C2/C3-SMN2 pre-mRNA complex and enhances SMN2 splicing. These findings underscore the potential of small-molecule drugs to selectively bind RNA and modulate pre-mRNA splicing as an approach to the treatment of human disease.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号