首页> 外文期刊>journal of chemical physics >Quantum study of vibrational excitation in the threehyphen;dimensional collisions of CO2with rare gas atoms
【24h】

Quantum study of vibrational excitation in the threehyphen;dimensional collisions of CO2with rare gas atoms

机译:Quantum study of vibrational excitation in the threehyphen;dimensional collisions of CO2with rare gas atoms

获取原文
           

摘要

A combined vibrational closehyphen;coupling and rotational infinite order sudden technique is described for calculating vibrational excitation cross sections sgr;vvprime;for the threehyphen;dimensional collisions of atoms with linear triatomic molecules. The method treats anharmonic, Coriolis, and vibrational angular momentum terms in the molecular Hamiltonian accurately, and is applicable to any realistic potential energy surface expressed in numerical or functional form. Application of the method to Xndash;CO2(v1v2lgr;v3) collisions, where X = He, Ne, or Ar, is described. An accurate anharmonic CO2potential, expressed in terms of bond and angle displacements, is employed. The Xndash;CO2interaction potentials are more approximate and are expanded in terms of atomndash;atom pair potentials. Calculations of sgr;vvprime;, over a grid of energies sufficient to give rate coefficientskvvprime;for transitions between the lowhyphen;lying states of CO2for temperatures up to 300 K, have been performed. Propensities for particular collisional excitations involving the symmetric stretch, bending, and asymmetric stretch vibrational modes of CO2are examined. It is found that the magnitudes of the sgr;vvprime;are largely determined by the energy differences between thevandvprime; levels. For example, excitation of the ground (00thinsp;00) state to the first excited bending state (0110) is found to be favored. sgr;vvprime;for near resonant transitions such as (02thinsp;00)rarr;(02thinsp;20) are found to increase with increasing mass of X. Deactivation of the (00thinsp;01) state to the (11thinsp;10) state is favored over other transitions. The ratios of the deactivation cross section for the level (00thinsp;01) to the deactivation cross sections for lower levels such as (01thinsp;10) are small, although these ratios do increase with increasing mass of X, in agreement with experimental findings. Comparison of calculatedkvvprime;, for deactivation of the (01thinsp;10) level, with those obtained in recent photoacoustic experiments is quite encouraging, considering the approximate nature of the Xndash;CO2interaction potentials used. For X = He and Ne these calculatedkvvprime;are within a factor of 5 of the experimental results and have the correct temperature dependence, while for X = Ar the calculations are much larger than the experimental results, and the temperature dependence is too shallow. The computer program used in the calculations is automatic and general, and should be applicable to many other atomndash;linear triatomic molecule collisions.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号