首页> 外文期刊>journal of chemical physics >Structure, energetics, and vibrational spectrum of H2Ondash;HCl
【24h】

Structure, energetics, and vibrational spectrum of H2Ondash;HCl

机译:Structure, energetics, and vibrational spectrum of H2Ondash;HCl

获取原文
           

摘要

H2Ondash;HCl is studied using a number of basis sets including 6hyphen;31Gast;ast; and variants which are augmented by a diffusespshell and a second set ofdfunctions on O and Cl. Optimization of the geometry of the complex is carried out including explicitly electron correlation and counterpoise correction of the basis set superposition error (BSSE) at both the SCF and correlated levels. Correlation strengthens and shortens the H bond while BSSE correction leads to an opposite trend; these two effects are of different magnitude and hence cancel one another only partially. Dgr;Hdeg;(298 K) is calculated to be minus;4.0 kcal/mol, 1/4 of which is due to correlation. Formation of the complex causes the strong intensification and red shift of the Hndash;Cl stretching band normally associated with H bonding, whereas the internal vibrations of H2O are very little affected, except for a doubling of the intensity of the symmetric stretch. With respect to the intermolecular modes, the bends of the proton donor are of higher frequency than those involving the acceptor. While these intermolecular bends are all of moderate intensity, comparable to the intramolecular modes, the Hhyphen;bond stretch ngr;sgr;is very weak indeed, consistent with a principle involving subunit dipoles. All calculated vibrational data are in excellent agreement with the spectra measured in solid inert gas matrices.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号