...
【24h】

Graphene quantum point contact transistor for DNA sensing

机译:Graphene quantum point contact transistor for DNA sensing

获取原文
获取原文并翻译 | 示例
           

摘要

By using the nonequilibrium Green's function technique, we show that the shape of the edge, the carrier concentration, and the position and size of a nanopore in graphene nanoribbons can strongly affect its electronic conductance as well as its sensitivity to external charges. This technique, combined with a self-consistent Poisson-Boltzmann formalism to account for ion charge screening in solution, is able to detect the rotational and positional conformation of a DNA strand inside the nanopore. In particular, we show that a graphene membrane with quantum point contact geometry exhibits greater electrical sensitivity than a uniform armchair geometry provided that the carrier concentration is tuned to enhance charge detection. We propose a membrane design that contains an electrical gate in a configuration similar to a field-effect transistor for a graphene-based DNA sensing device.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号