...
首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Force distribution affects vibrational properties in hard-sphere glasses
【24h】

Force distribution affects vibrational properties in hard-sphere glasses

机译:Force distribution affects vibrational properties in hard-sphere glasses

获取原文
获取原文并翻译 | 示例
           

摘要

We theoretically and numerically study the elastic properties of hard-sphere glasses and provide a real-space description of their mechanical stability. In contrast to repulsive particles at zero temperature, we argue that the presence of certain pairs of particles interacting with a small force f soften elastic properties. This softening affects the exponents characterizing elasticity at high pressure, leading to experimentally testable predictions. Denoting P(f) similar to f(theta e), the force distribution of such pairs and phi(c) the packing fraction at which pressure diverges, we predict that (i) the density of states has a low-frequency peak at a scale.*, rising up to it as D(omega)similar to omega(2+a), and decaying above omega* as D(omega)similar to omega(-a) where a=(1-theta(e))/(3+theta(e)) and omega is the frequency, (ii) shear modulus and mean-squared displacement are inversely proportional with similar to 1/mu similar to(phi(c)-phi)(k), where kappa= 2-2=(3+theta(e)), and (iii) continuum elasticity breaks down on a scale l(c) similar to 1/root delta z similar to(phi(c)-phi)(-b), where b=(1+theta(e))/(6+2 theta(e)) and partial derivative z = z - 2d, where z is the coordination and d the spatial dimension. We numerically test (i) and provide data supporting that theta(e) approximate to 0.41 in our bidisperse system, independently of system preparation in two and three dimensions, leading to kappa approximate to 1.41, a approximate to 0.17, and b approximate to 0.21. Our results for the mean-square displacement are consistent with a recent exact replica computation for d =infinity, whereas some observations differ, as rationalized by the present approach.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号