...
首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Lack of pairing during meiosis triggers multigenerational transgene silencing in Caenorhabditis elegans
【24h】

Lack of pairing during meiosis triggers multigenerational transgene silencing in Caenorhabditis elegans

机译:Lack of pairing during meiosis triggers multigenerational transgene silencing in Caenorhabditis elegans

获取原文
获取原文并翻译 | 示例
           

摘要

Single-copy transgenes in Caenorhabditis elegans can be subjected to a potent, irreversible silencing process termed small RNA-induced epigenetic silencing (RNAe). RNAe is promoted by the Piwi Argonaute protein PRG-1 and associated Piwi-interacting RNAs (piRNAs), as well as by proteins that promote and respond to secondary small interfering RNA (siRNA) production. Here we define a related siRNA-mediated silencing process, termed "multigenerational RNAe," which can occur for transgenes that are maintained in a hemizygous state for several generations. We found that transgenes that contain either GFP or mCherry epitope tags can be silenced via multigenerational RNAe, whereas a transgene that possesses GFP and a perfect piRNA target site can be rapidly and permanently silenced via RNAe. Although previous studies have shown that PRG-1 is typically dispensable for maintenance of RNAe, we found that both initiation and maintenance of multigenerational RNAe requires PRG-1 and the secondary siRNA biogenesis protein RDE-2. Although silencing via RNAe is irreversible, we found that transgene expression can be restored when hemizygous transgenes that were silenced via multigenerational RNAe become homozygous. Furthermore, multigenerational RNAe was accelerated when meiotic pairing of the chromosome possessing the transgene was abolished. We propose that persistent lack of pairing during meiosis elicits a reversible multigenerational silencing response, which can lead to permanent transgene silencing. Multigenerational RNAe may be broadly relevant to single-copy transgenes used in experimental biology and to shaping the epigenomic landscape of diverse species, where genomic polymorphisms between homologous chromosomes commonly result in unpaired DNA during meiosis.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号