...
首页> 外文期刊>Journal of geophysical research >Evolution of the fire-hose instability: Linear theory and wave-wave coupling
【24h】

Evolution of the fire-hose instability: Linear theory and wave-wave coupling

机译:Evolution of the fire-hose instability: Linear theory and wave-wave coupling

获取原文
获取原文并翻译 | 示例
           

摘要

Large ion thermal or kinetic pressure anisotropies have been inferred to exist in conjunction with supernova shocks as well as in the solar wind/cometary interaction region and upstream from planetary bow shocks. For sufficiently strong thermal or beam-driven anisotropies, electromagnetic instability develops, isotropizing and scattering the ion populations. In particular, if the effective plasma beta > 2 (where beta is the ratio of plasma pressure to magnetic pressure), and if the anisotropy is such that the temperature parallel to the magnetic field exceeds the perpendicular, then fire-hose instability can result, generating transverse magnetic field fluctuations. In high-beta interstellar plasmas with large anisotropies, the level of the excited fluctuations may be quite large, exceeding even the ambient magnetic field. After a. period of inverse-cascade to longer wavelengths, it may provide a potential source for the scattering of cosmic rays. In this study we simulate the evolution of the fire-hose instability using a standard one-dimensional hybrid code (macroparticle ions, massless fluid electrons). We find that the wave evolution proceeds in two stages. A rapid period of growth brings the plasma back to approximate marginal stability. There follows a second stage of slower evolution dominated by wave-wave interaction. During the second stage, the wave energy spectrum clearly exhibits an inverse cascade. Implications for cosmic ray scattering will be discussed.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号