...
首页> 外文期刊>Journal of geophysical research >Pitch Angle Scattering of Energetic Electrons by BBFs
【24h】

Pitch Angle Scattering of Energetic Electrons by BBFs

机译:Pitch Angle Scattering of Energetic Electrons by BBFs

获取原文
获取原文并翻译 | 示例
           

摘要

abstract_textpField line curvature scattering by the magnetic field structure associated with bursty bulk flows (BBFs) has been studied, using simulated output fields from the Lyon-Fedder-Mobarry global magnetohydrodynamic code for specified solar wind input. There are weak magnetic field strength (B) regions adjacent to BBFs observed in the simulations. We show that these regions can cause strong scattering where the first adiabatic invariant changes by several factors within one equatorial crossing of energetic electrons of a few kiloelectron volts when the BBFs are beyond 10 R-E geocentric in the tail. Scattering by BBFs decreases as they move toward the Earth or when the electron energy decreases. For radiation belt electrons near or inside geosynchronous orbit we demonstrate that the fields associated with BBFs can cause weak scattering where the fractional change of the first invariant (mu(0)) within one equatorial crossing is small, but the change due to several crossings can accumulate. For the weak scattering case we developed a method of calculating the pitch angle diffusion coefficient D-alpha alpha.D-alpha alpha for radiation belt electrons for one particular BBF were calculated as a function of initial energy, equatorial pitch angle, and radial location. These D-alpha alpha values were compared to calculated D-alpha alpha for a dipole field with no electric field. We further compared D-alpha alpha values with that of stretched magnetic fields calculated by Artemyev et al. (2013, https://doi.org/10.5194/angeo-31-1485-2013) at r approximate to 7 R-E. Results show that scattering by BBFs can be comparable to the most highly stretched magnetic field they studied./p/abstract_text

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号