...
【24h】

Zr and Hf diffusion in rutile

机译:Zr和Hf在金红石中的扩散

获取原文
获取原文并翻译 | 示例
           

摘要

Chemical diffusion of Zr and Hf under anhydrous conditions has been measured in synthetic and natural rutile. The sources of diffusant used were hafnon or zircon powders or a hafnon-rutile mixture. Experiments were run in crimped Pt capsules in air, or in sealed silica glass capsules with solid buffers (to buffer at NNO or QFM). Rutherford Backscattering Spectrometry (RBS) was used to measure Zr and Hf diffusion profiles. From these measurements, the following Arrhenius relations were obtained: For Zr diffusion parallel to c, over the temperature range 750-1100 degrees C: D-Zr broken vertical bar c = 9.8 x 10(-15) exp(-170 +/- 30 kJ mol(-1)/RT) m(2) s(-1) For Hf diffusion parallel to c, over the temperature range 800-1000 degrees C: D-Hf broken vertical bar c = 9.1 x 10(-15) exp(-169 +/- 36 kJ mol(-1)/RT) m(2) s(-1) For Hf diffusion normal to c, over the temperature range 750-1050 degrees C: D-Hf perpendicular to c = 2.5 x 10(-12) exp(-227 +/- 62 kJ mol(-1)/RT) m(2) s(-1) Diffusivities for experiments buffered at QFM and NNO are similar to those run in air. Diffusivities in synthetic and natural rutile are likewise similar, indicating that these findings can be applied directly in determining Zr diffusivities in rutile in natural systems. These data indicate that rutile should be moderately retentive of Zr chemical signatures, with Zr diffusivities within an order of magnitude of those for Pb in rutile over most geologic conditions. When applied in evaluation of the relative robustness of the recently developed Zr-in-rutile geothermometer [T. Zack, R. Moraes, A. Kronz, Temperature dependence of Zr in rutile: empirical calibration of a rutile thermometer, Contributions to Mineralogy and Petrology 148 (2004) 471-488., E.B. Watson, D.A. Wark, J.B. Thomas, Crystallization thermometers for zircon and rutile, Contributions to Mineralogy and Petrology 151 (2006) 413-433.], these findings suggest that Zr concentrations in rutile will be somewhat more likely to be affected by later thermal disturbance than the geothermometer based on Zr concentrations in titanite [L. Hayden, E.B.Watson, D.A. Wark, A thermobarometer for spheric, Abstract, 16th V.M. Goldschmidt Conference (2006).], and much less resistant to diffusional alteration subsequent to crystallization than the Ti-in-zircon geothermometer.
机译:已在合成和天然金红石中测量了Zr和Hf在无水条件下的化学扩散。所用的扩散剂来源是哈非或锆石粉或哈非-金红石混合物。实验在空气中卷曲的Pt胶囊中进行,或在带有固体缓冲液(以NNO或QFM缓冲)的密封石英玻璃胶囊中进行。卢瑟福背散射光谱(RBS)用于测量Zr和Hf扩散曲线。通过这些测量,获得以下Arrhenius关系:对于平行于c的Zr扩散,在750-1100摄氏度的温度范围内:D-Zr折断的竖线c = 9.8 x 10(-15)exp(-170 +/- 30 kJ mol(-1)/ RT)m(2)s(-1)对于平行于c的Hf扩散,在800-1000摄氏度的温度范围内:D-Hf垂直断条c = 9.1 x 10(-15) )exp(-169 +/- 36 kJ mol(-1)/ RT)m(2)s(-1)对于垂直于c的Hf扩散,在750-1050摄氏度的温度范围内:D-Hf垂直于c = 2.5 x 10(-12)exp(-227 +/- 62 kJ mol(-1)/ RT)m(2)s(-1)在QFM和NNO缓冲的实验的扩散系数类似于在空气中进行的扩散系数。合成金红石和天然金红石中的扩散率相似,表明这些发现可直接用于确定天然系统中金红石中Zr的扩散率。这些数据表明,在大多数地质条件下,金红石应适度保留Zr的化学特征,且Zr的扩散度与金红石中Pb的扩散程度相近。当用于评估最近开发的金红石型Zr地热仪[T. Zack,R。Moraes,A。Kronz,《金红石中Zr的温度依赖性:金红石温度计的经验标定》,《矿物学和岩石学研究》,148(2004)471-488。沃森(D.A.) Wark,JB Thomas,锆石和金红石结晶温度计,对矿物学和岩石学的贡献151(2006)413-433。],这些发现表明,金红石中的Zr浓度比地热仪受热干扰的影响更大。基于钛矿中Zr的浓度[L.海登(Hayden),沃森(E.B.)沃森(D.A.) Wark,球形热压计,摘要,16th V.M. Goldschmidt Conference(2006)。],并且比锆石Ti地热仪对结晶后的扩散变化的抵抗力小得多。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号