首页> 外文期刊>Molecular and Cellular Biology >Expression of Escherichia coli Methionyl-tRNA Formyltransferase in Saccharomyces cerevisiae Leads to Formylation of the Cytoplasmic Initiator tRNA and Possibly to Initiation of Protein Synthesis with Formylmethionine.
【24h】

Expression of Escherichia coli Methionyl-tRNA Formyltransferase in Saccharomyces cerevisiae Leads to Formylation of the Cytoplasmic Initiator tRNA and Possibly to Initiation of Protein Synthesis with Formylmethionine.

机译:酿酒酵母中大肠杆菌蛋氨酰-tRNA甲酰转移酶的表达导致细胞质起始剂tRNA的甲酰化,并可能启动与甲酰蛋氨酸的蛋白质合成。

获取原文
获取原文并翻译 | 示例
           

摘要

Protein synthesis in eukaryotic cytoplasm and in archaebacteria is initiated with methionine, whereas, that in eubacteria and in eukaryotic organelles, such as mitochondria and chloroplasts, is initiated with formylmethionine. In view of this clear distinction, we have investigated whether protein synthesis in the eukaryotic cytoplasm can be initiated with formylmethionine, and, if so, what the consequences are to the cell. For this purpose, we have expressed in an inducible manner the Escherichia coli methionyl-tRNA formyltransferase (MTF) in the cytoplasm of the yeast Saccharomyces cerevisiae. Expression of active MTF, but not of an inactive mutant, leads to formylation of methionine attached to the yeast cytoplasmic initiator tRNA to the extent of about 70. As a consequence, the yeast strain grows slowly. Coexpression of the E. coli polypeptide deformylase (DEF), which removes the formyl group from the N-terminal formylmethionine in a polypeptide, rescues the slow-growth phenotype, whereas, coexpression of an inactive mutant of DEF does not. These results suggest that the cytoplasmic protein-synthesizing system of yeast, like that of eubacteria, can at least to some extent utilize formylated initiator Met-tRNA to initiate protein synthesis and that initiation of proteins with formylmethionine leads to the slow-growth phenotype. Removal of the formyl group in these proteins by DEF would explain the rescue of the slow-growth phenotype.
机译:真核细胞质和古细菌中的蛋白质合成由蛋氨酸启动,而真细菌和真核细胞器(如线粒体和叶绿体)中的蛋白质合成由甲酰蛋氨酸启动。鉴于这种明显的区别,我们研究了真核细胞质中的蛋白质合成是否可以用甲酰蛋氨酸启动,如果可以,对细胞的后果是什么。为此,我们以诱导型方式在酵母酿酒酵母的细胞质中表达了大肠杆菌蛋氨酰-tRNA甲酰转移酶(MTF)。活性MTF的表达,而不是非活性突变体的表达,导致附着在酵母细胞质起始剂tRNA上的蛋氨酸的甲酰化,达到约70%的程度。因此,酵母菌株生长缓慢。大肠杆菌多肽脱甲酰酶 (DEF) 的共表达,从多肽中的 N 端甲酰蛋氨酸中去除甲酰基,挽救了缓慢生长的表型,而 DEF 的非活性突变体的共表达则不然。这些结果表明,酵母的细胞质蛋白质合成系统与真细菌的细胞质蛋白质合成系统一样,至少在某种程度上可以利用甲酰化引发剂Met-tRNA来启动蛋白质合成,并且用甲酰甲硫氨酸启动蛋白质会导致缓慢生长表型。通过DEF去除这些蛋白质中的甲酰基可以解释缓慢生长表型的挽救。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号