...
首页> 外文期刊>The journal of physical chemistry, A. Molecules, spectroscopy, kinetics, environment, & general theory >Three-center-two-electron and four-center-four-electron bonds. A study by electron charge density over the structure of methonium cations
【24h】

Three-center-two-electron and four-center-four-electron bonds. A study by electron charge density over the structure of methonium cations

机译:

获取原文
获取原文并翻译 | 示例
           

摘要

We study the electronic density charge topology of CH5+ species 1 (C-s), 2 (C-s), and 3 (C-2 upsilon) at ab initio level using the theory of atoms in molecules developed by Bader. Despite the reports of previous studies concerning carbocationic species, the methane molecule is protonated at the carbon atom, which clearly shows its pentacoordination. In addition to the fact that hydrogen atoms in the methonium molecule behave in a very fluxional fashion and that the energy difference among the species 1, 2, and 3 are very low, is important to point out that two different topological situations can be defined on the basis of our study of the topology of the electronic charge density. Then, the species 1 and 2 present a three-center-two-electron (3c-2e) bond of singular characteristics as compared with other carbocationic species, but in the species 3, the absence of a 3c-2e bond is noteworthy. This structure can be characterized through the three bond critical points found, corresponding to saddle points on the path bonds between the C-H(2,3,5) that lie in the same plane. These nuclei define a four-center interaction where the electronic delocalization produced among the sigma(C-H) bonds provide a stabilization of the three C-H bonds involved in this interaction (the remaining two C-H bonds are similar to those belonging to the nonprotonated species). Our results show that bonding situations with a higher number of atom arrays are possible in protonated hydrocarbons.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号