...
首页> 外文期刊>Physical review, D. Particles, fields, gravitation, and cosmology >Solution of the problem of uniqueness and Hermiticity of Hamiltonians for Dirac particles in gravitational fields
【24h】

Solution of the problem of uniqueness and Hermiticity of Hamiltonians for Dirac particles in gravitational fields

机译:

获取原文
获取原文并翻译 | 示例
           

摘要

The authors prove that the dynamics of spin 1/2 particles in stationary gravitational fields can be described using an approach, which builds upon the formalism of pseudo-Hermitian Hamiltonians. The proof consists in the analysis of three expressions for Hamiltonians, which are derived from the Dirac equation and describe the dynamics of spin 1/2 particles in the gravitational field of the Kerr solution. The Hamiltonians correspond to different choices of tetrad vectors and differ from each other. The differences between the Hamiltonians confirm the conclusion known from many studies that the Hamiltonians derived from the Dirac equation are nonunique. Application of standard pseudo-Hermitian quantum mechanics rules to each of these Hamiltonians produces the same Hermitian Hamiltonian. The eigenvalue spectrum of the resulting Hamiltonian is the same as that of the Hamiltonians derived from the Dirac equation with any chosen system of tetrad vectors. For description of the dynamics of spin 1/2 particles in stationary gravitational fields can be used not only the formalism of pseudo-Hermitian Hamiltonians but also an alternative approach, which employs the Parker scalar product. The authors show that the alternative approach is equivalent to the formalism of pseudo-Hermitian Hamiltonians.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号