...
首页> 外文期刊>Physical review, B. Condensed matter and materials physics >Mean-field description of odd-frequency superconductivity with staggered ordering vector
【24h】

Mean-field description of odd-frequency superconductivity with staggered ordering vector

机译:

获取原文
获取原文并翻译 | 示例
           

摘要

A low-energy fixed-point Hamiltonian is constructed for the s-wave odd-frequency pairing state with staggered ordering vector in the two-channel Kondo lattice. The effective model is justified because it reproduces low-energy behaviors of self-energy obtained by the dynamical mean-field theory. The retardation effect is essential for the odd-frequency pairing, which comes from the hybridization process between conduction electrons and pseudofermions originating from localized spins at low energies. Using the effective Hamiltonian, the electromagnetic response functions are microscopically calculated. The present system shows a “weak” Meissner effect, where both paramagnetic and diamagnetic parts contribute to the Meissner kernel to give a small total diamagnetic response in the superconducting state. This feature is in contrast to the ordinary s-wave BCS pairing where only the diamagnetic kernel is finite in the ground state. The staggered nature of the odd-frequency order parameter plays an important role for the sign of the Meissner kernel.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号