...
【24h】

Parameter space in Galileon c models

机译:

获取原文
获取原文并翻译 | 示例
           

摘要

We present the first constraints on the full parameter space of the Galileon modified gravity model, considering both the cosmological parameters and the coefficients which specify the additional terms in the Lagrangian due to the Galileon field, which we call the Galileon parameters. We use the latest cosmic microwave background measurements, along with distance measurements from supernovae and baryonic acoustic oscillations, performing a Monte Carlo Markov Chain exploration of the nine-dimensional parameter space. The integrated Sachs-Wolfe signal can be very different in Galileon models compared to standard gravity, making it essential to use the full cosmic microwave background data rather than the cosmic microwave background distance priors. We demonstrate that meaningful constraints are only possible in the Galileon parameter space after taking advantage of a scaling degeneracy. We find that the Galileon model can fit the Wilkinson microwave anisotropy probe 9-year results better than the standard Λ-cold dark matter model, but gives a slightly worse fit overall once lower redshift distance measurements are included. The best-fitting cosmological parameters (e.g., matter density, scalar spectral index, fluctuation amplitude) can differ by more than 2σ in the Galileon model compared with ΛCDM. We highlight other potential constraints of the Galileon model using galaxy clustering and weak lensing measurements.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号