...
首页> 外文期刊>Physical review, B. Condensed matter and materials physics >Thermodynamics of L1(0) ordering in FePt nanoparticles studied by Monte Carlo simulations based on an analytic bond-order potential
【24h】

Thermodynamics of L1(0) ordering in FePt nanoparticles studied by Monte Carlo simulations based on an analytic bond-order potential

机译:

获取原文
获取原文并翻译 | 示例
           

摘要

The size dependence of the order-disorder transition in FePt nanoparticles with an L1(0) structure is investigated by means of Monte Carlo simulations based on an analytic bond-order potential for FePt. A cross parametrization for the Fe-Pt interaction is proposed, which complements existing potentials for the constituents Fe and Pt. This FePt potential properly describes structural properties of ordered and disordered phases, surface energies, and the L1(0) to A1 transition temperature in bulk FePt. The potential is applied for examining the ordering behavior in small particles. The observed lowering of the order-disorder transition temperature with decreasing particle size confirms previous lattice-based Monte Carlo simulations M. Muller and K. Albe, Phys. Rev. B 72, 094203 (2005). Although a distinctly higher amount of surface induced disorder is found in comparison to previous studies based on lattice-type Hamiltonians, the presence of lattice strain caused by the tetragonal distortion of the L1(0) structure does not have a significant influence on the depression of the ordering temperature with decreasing particle size.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号