...
首页> 外文期刊>Experiments in Fluids: Experimental Methods and Their Applications to Fluid Flow >Control of the corner separation in a compressor cascade by steady and unsteady plasma aerodynamic actuation
【24h】

Control of the corner separation in a compressor cascade by steady and unsteady plasma aerodynamic actuation

机译:通过稳定和不稳定的等离子气动促动来控制压缩机叶栅中的角分离

获取原文
获取原文并翻译 | 示例
           

摘要

This paper reports experimental results on using steady and unsteady plasma aerodynamic actuation to control the corner separation, which forms over the suction surface and end wall corner of a compressor cascade blade passage. Total pressure recovery coefficient distribution was adopted to evaluate the corner separation. Corner separation causes significant total pressure loss even when the angle of attack is 0°. Both steady and unsteady plasma aerodynamic actuations suppress the corner separation effectively. The control effect obtained by the electrode pair at 25% chord length is as effective as that obtained by all four electrode pairs. Increasing the applied voltage improves the control effect while it augments the power requirement. Increasing the Reynolds number or the angle of attack makes the corner separation more difficult to control. The unsteady actuation is much more effective and requires less power due to the coupling between the unsteady actuation and the separated flow. Duty cycle and excitation frequency are key parameters in unsteady plasma flow control. There are thresholds in both the duty cycle and the excitation frequency, above which the control effect saturates. The maximum relative reduction in total pressure loss coefficient achieved is up to 28% at 70% blade span. The obvious difference between steady and unsteady actuation may be that wall jet governs the flow control effect of steady actuation, while much more vortex induced by unsteady actuation is the reason for better control effect.
机译:本文报告了使用稳态和非稳态等离子体空气动力驱动来控制转角分离的实验结果,该转角形成在压缩机叶栅叶片通道的吸入表面和端壁转角上。采用总压力恢复系数分布来评估拐角分离。即使迎角为0°,转角分离也会造成明显的总压力损失。稳定和不稳定的等离子体空气动力致动都有效地抑制了角分离。电极对在弦长为25%时所获得的控制效果与所有四个电极对所获得的控制效果一样有效。增加施加的电压可以改善控制效果,同时又可以增加功率需求。增加雷诺数或迎角会使角间距更难控制。由于不稳定驱动和分离的流之间的耦合,不稳定驱动更加有效并且需要较少的动力。占空比和激励频率是不稳定等离子体流控制中的关键参数。占空比和激励频率都有阈值,在这些阈值之上,控制效果就会达到饱和。在叶片跨度为70%时,所获得的总压力损失系数的最大相对降低幅度高达28%。稳态和非稳态驱动之间的明显区别可能是壁射流支配了稳态驱动的流量控制效果,而非稳态驱动引起的涡流更多是控制效果更好的原因。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号