...
首页> 外文期刊>Physical review, B. Condensed matter and materials physics >Structures and stability of calcium and magnesium carbonates at mantle pressures
【24h】

Structures and stability of calcium and magnesium carbonates at mantle pressures

机译:

获取原文
获取原文并翻译 | 示例
           

摘要

Ab initio random structure searching (AIRSS) and density functional theory methods are used to predict structures of calcium and magnesium carbonate (CaCO3 and MgCO3) at high pressures. We find a previously unknown CaCO3 structure which is more stable than the aragonite and "post aragonite" phases in the range 32-48 GPa. At pressures from 76 GPa to well over 100 GPa the most stable phase is a previously unknown CaCO3 structure of the pyroxene type with fourfold coordinated carbon atoms. We also predict a stable structure of MgCO3 in the range 85-101 GPa. Our results lead to a revision of the phase diagram of CaCO3 over more than half the pressure range encountered within the Earth's mantle, and smaller changes to the phase diagram of MgCO3. We predict CaCO3 to be more stable than MgCO3 in the Earth's mantle above 100 GPa, and that CO2 is not a thermodynamically stable compound under deep mantle conditions. Our results have significant implications for understanding the Earth's deep carbon cycle.

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号