...
首页> 外文期刊>Physical review, D. Particles, fields, gravitation, and cosmology >Redshift drift in Lema?tre-Tolman-Bondi void universes
【24h】

Redshift drift in Lema?tre-Tolman-Bondi void universes

机译:

获取原文
获取原文并翻译 | 示例
           

摘要

We study the redshift drift, i.e., the time derivative of the cosmological redshift in the Lema?tre-Tolman-Bondi (LTB) solution in which the observer is assumed to be located at the symmetry center. This solution has often been studied as an anti-Copernican universe model to explain the acceleration of cosmic volume expansion without introducing the concept of dark energy. One of the decisive differences between LTB universe models and Copernican universe models with dark energy is believed to be the redshift drift. The redshift drift is negative in all known LTB universe models, whereas it is positive in the redshift domain z 2 in Copernican models with dark energy. However, there have been no detailed studies on this subject. In the present paper, we prove that the redshift drift of an off-center source is always negative in the case of LTB void models. We also show that the redshift drift can be positive with an extremely large hump-type inhomogeneity. Our results suggest that we can determine whether we live near the center of a large void without dark energy by observing the redshift drift.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号