...
首页> 外文期刊>Physical review, B. Condensed matter and materials physics >Microscopic current dynamics in nanoscale junctions
【24h】

Microscopic current dynamics in nanoscale junctions

机译:

获取原文
获取原文并翻译 | 示例
           

摘要

So far, transport properties of nanoscale contacts have been studied mostly within the static scattering approach. The electron dynamics and the transient behavior of current flow, however, remain poorly understood. We present a numerical study of microscopic current flow dynamics in nanoscale quantum point contacts. We employ an approach that combines a microcanonical picture of transport with time-dependent density-functional theory. We carry out atomic and jellium model calculations to show that the time evolution of the current flow exhibits several noteworthy features, such as nonlaminarity and edge flow. We attribute these features to the interaction of the electron fluid with the ionic lattice, to the existence of pressure gradients in the fluid, and to the transient dynamical formation of surface charges at the nanocontact-electrode interfaces. Our results suggest that quantum transport systems exhibit hydrodynamical characteristics, which resemble those of a classical liquid.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号