...
首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Numerical analysis of complex instability behaviour using incremental-iterative strategies
【24h】

Numerical analysis of complex instability behaviour using incremental-iterative strategies

机译:

获取原文
获取原文并翻译 | 示例
           

摘要

The paper describes how quasi-static, conservative instability problems can be analysed in a multi-parametric space, using genaralised path-following procedures for augmented equilibrium problems. The general formulation of such augmented equilibrium problems is discussed in some detail. The focus is set on two classes of generalised 1D paths: basic equilibrium paths and fold lines, i.e. critical subset paths. The solution methods are seen as extensions to common incremental-iterative strategies, allowing the computation of subsets of equilibrium states which also fulfil some auxiliary conditions, e.g. criticality. In this context, some emphasis is also given to the evaluation of the properties of the problem, at a certain -state; the tangential stiffness is here used to evaluate—possibly multidimensional—tangent spaces, and in the isolation of special states, i.e. vanishing variables, turning points and exchanges of stability, being important aspects of instability analyses. A set of carefully chosen numerical examples demonstrate on one hand the ability of the numerical procedures to deal with complex instability phenomena, including coincident or near coincident buckling modes, modal interaction, secondary bifurcations, and, on the other hand, their versatility in performing parameter sensitivity analyses. Finally, comparisons with alternative techniques, based on asymptotic strategies, are also put forth.

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号