...
首页> 外文期刊>Journal of environmental science and health, Part A. Toxic/hazardous substances & environmental engineering >Co-metabolic degradation of steroid estrogens by heterotrophic bacteria and nitrifying bacteria in MBRs
【24h】

Co-metabolic degradation of steroid estrogens by heterotrophic bacteria and nitrifying bacteria in MBRs

机译:

获取原文
获取原文并翻译 | 示例
           

摘要

Three membrane bioreactors (MBRs) with different carbon/nitrogen ratios were operated in parallel to investigate the effects of heterotrophic bacteria and nitrifying bacteria on the co-metabolic degradation of the steroid estrogens (SEs) estrone (E1) and 17-ethinylestradiol (EE2). The functional community structures of the MBRs were analyzed using fluorescence in situ hybridization, and correlations between the functional community structures and SE removal efficiencies were established. The results showed that -Proteobacteria, -Proteobacteria, and -proteobacteria were responsible for the removal of E1, whereas ammonia-oxidizing bacteria, Nitrosomonas sp., Nitrosospira sp., Nitrospira sp., and Nitrobacter sp. were responsible for EE2 removal. Nitrifying activated sludge degraded E1 and EE2 alone, with degradation efficiencies of 71.04 and 65.51, respectively. Moreover, biodegradation of E1 and EE2 was reduced significantly (by 30.30 and 34.03, respectively) when nitrification was inhibited. Heterotrophic and nitrifying bacteria were responsible for E1 and EE2 degradation, but nitrification was considered to be the key process in the enhancement of SE degradation. Organic co-metabolism by heterotrophic bacteria had a significant effect on E1 removal, and nitrification co-metabolism by nitrifying bacteria had a significant effect on EE2 removal. These results improve our understanding of the co-metabolic degradation of SEs, which is useful for improving SE removal and guaranteeing the health of aqueous environments.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号