...
首页> 外文期刊>Applied mathematical modelling >Tuning criterion for the inertial tuned damper. Design using phasors in the Argand-Gauss plane
【24h】

Tuning criterion for the inertial tuned damper. Design using phasors in the Argand-Gauss plane

机译:

获取原文
获取原文并翻译 | 示例
           

摘要

A new approach to the design of a dynamic damper for a monomass oscillator is presented; the design procedure is then applied to control a multimodal oscillator. This new dynamics emerged from an analysis by means of phasors (rotating vectors in the Argand-Gauss plane) which revealed the phase relations between the damper and main oscillator. In particular this work introduces a geometric formalism, based on the use of phasors in the complex plane, for the sizing of inertial dampers applied to multimodal structural oscillators. Their damping effect depends on the fact that the response of the secondary oscillator (the damper) delays the response of the primary mass by 90°, so that the elastic force transmitted by the damper becomes a viscous force on the controlled oscillator. When such condition occurs we say that the damper is 'tuned' to the main oscillator: the damping induced by the damper serves to limit the displacement of main oscillator. Our geometrical approach provides a method whose language is close to that of structural mechanics, thus paving the way to the professionals for: (i) sizing the damper parameters and (ii) evaluating the stability to the damped system and its performance limits. The aim of the development is that of exploring the use of dampers to control the response of buildings under horizontal seismic and aerodynamic loads.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号