首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Microsatellite evolution inferred from human-chimpanzee genomic sequence alignments.
【24h】

Microsatellite evolution inferred from human-chimpanzee genomic sequence alignments.

机译:

获取原文
获取原文并翻译 | 示例
           

摘要

Most studies of microsatellite evolution utilize long, highly mutable loci, which are unrepresentative of the majority of simple repeats in the human genome. Here we use an unbiased sample of 2,467 microsatellite loci derived from alignments of 5.1 Mb of genomic sequence from human and chimpanzee to investigate the mutation process of tandemly repetitive DNA. The results indicate that the process of microsatellite evolution is highly heterogeneous, exhibiting differences between loci of different lengths and motif sizes and between species. We find a highly significant tendency for human dinucleotide repeats to be longer than their orthologues in chimpanzees, whereas the opposite trend is observed in mononucleotide repeat arrays. Furthermore, the rate of divergence between orthologues is significantly higher at longer loci, which also show significantly greater mutability per repeat number. These observations have important consequences for understanding the molecular mechanisms of microsatellite mutation and for the development of improved measures of genetic distance.

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号