...
首页> 外文期刊>Geophysical Research Letters >Retrieving Accurate Precipitable Water Vapor Based on GNSS Multi‐Antenna PPP With an Ocean‐Based Dynamic Experiment
【24h】

Retrieving Accurate Precipitable Water Vapor Based on GNSS Multi‐Antenna PPP With an Ocean‐Based Dynamic Experiment

机译:

获取原文
获取原文并翻译 | 示例
           

摘要

Abstract As an attractive technique for measuring water vapor, the Global Navigation Satellite System (GNSS) faces additional challenges in dynamic applications such as in the open sea. We present a new method of retrieving precipitable water vapor (PWV) based on GNSS multi‐antenna precise point positioning (PPP), which uses GNSS data from multiple antennas and incorporates the constraints of known baseline vector and common tropospheric delay. The 4‐day shipborne dynamic experiment along the China coast demonstrates that the baseline vector constraint shortens the convergence time of positioning and atmospheric parameters, and also slightly improves their accuracies. The common tropospheric delay constraint helps to provide compromised, more robust, and sometimes more accurate PWV estimates. An evaluation with radiosonde‐derived PWVs shows that the combination of the two constraints achieves the best accuracy reaching 4.2 mm. This method helps to expand GNSS meteorology to the vast ocean and benefits satellite altimetry and weather forecasting.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号