...
首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Crystal structure and electron transfer kinetics of CueO, a multicopper oxidase required for copper homeostasis in Escherichia coli.
【24h】

Crystal structure and electron transfer kinetics of CueO, a multicopper oxidase required for copper homeostasis in Escherichia coli.

机译:

获取原文
获取原文并翻译 | 示例
           

摘要

CueO (YacK), a multicopper oxidase, is part of the copper-regulatory cue operon in Escherichia coli. The crystal structure of CueO has been determined to 1.4-A resolution by using multiple anomalous dispersion phasing and an automated building procedure that yielded a nearly complete model without manual intervention. This is the highest resolution multicopper oxidase structure yet determined and provides a particularly clear view of the four coppers at the catalytic center. The overall structure is similar to those of laccase and ascorbate oxidase, but contains an extra 42-residue insert in domain 3 that includes 14 methionines, nine of which lie in a helix that covers the entrance to the type I (T1, blue) copper site. The trinuclear copper cluster has a conformation not previously seen: the Cu-O-Cu binuclear species is nearly linear (Cu-O-Cu bond angle = 170 degrees) and the third (type II) copper lies only 3.1 A from the bridging oxygen. CueO activity was maximal at pH 6.5 and in the presence of >100 microM Cu(II). Measurements of intermolecular and intramolecular electron transfer with laser flash photolysis in the absence of Cu(II) show that, in addition to the normal reduction of the T1 copper, which occurs with a slow rate (k = 4 x 10(7) M(-1)x (-1)), a second electron transfer process occurs to an unknown site, possibly the trinuclear cluster, with k = 9 x 10(7) M(-1) x (-1), followed by a slow intramolecular electron transfer to T1 copper (k approximately 10 s(-1)). These results suggest the methionine-rich helix blocks access to the T1 site in the absence of excess copper.

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号