...
首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Proton shuttle in green fluorescent protein studied by dynamic simulations.
【24h】

Proton shuttle in green fluorescent protein studied by dynamic simulations.

机译:

获取原文
获取原文并翻译 | 示例
           

摘要

As a direct simulation of a multistep proton transfer reaction involving protein residues, the proton relay shuttle between A and I forms of green fluorescent protein (GFP) is simulated in atomic detail by using a special molecular dynamics simulation technique. Electronic excitation of neutral chromophore in wild-type GFP is generally followed by excited-state proton transfer to a nearby glutamic acid residue via a water molecule and a serine residue. Here we show that the second and third transfer steps occur ultrafast on time scales of several tens of femtoseconds. Proton back-shuttle in the ground state is slower and occurs in a different sequence of events. The simulations provide atomic models of various intermediates and yield realistic rate constants for proton transfer events. In particular, we argue that the I form observed spectroscopically under equilibrium conditions may differ from the I form observed as a fast intermediate by an anti to syn rotation of the carboxyl proton of neutral Glu-222.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号