...
首页> 外文期刊>Physics of fluids >A computational study on osmotic chemotaxis of a reactive Janusbot
【24h】

A computational study on osmotic chemotaxis of a reactive Janusbot

机译:

获取原文
获取原文并翻译 | 示例
           

摘要

We explore the chemotaxis of an elliptical double-faced Janus motor (Janusbot) stimulated by a second-order chemical reaction on the surfaces, aA + bB → cC + dD, inside a microfluidic channel. The self-propulsions are modeled considering the full descriptions of hydrodynamic governing equations coupled with reaction-diffusion equations and fluid-structure interaction. The simulations, employing a finite element framework, uncover that the differential rate kinetics of the reactions on the dissimilar faces of the Janusbot help in building up enough osmotic pressure gradient for the motion as a result of non-uniform spatiotemporal variations in the concentrations of the reactants and products around the particle. The simulations uncover that the mass diffusivities of the reactants and products along with the rates of forward and backward reactions play crucial roles in determining the speed and direction of the propulsions. Importantly, we observe that the motor can move even when there is no difference in the total stoichiometry of the reactants and products, (a + b) = (c + d). In such a scenario, while the reaction triggers the motion, the difference in net-diffusivities of the reactants and products develops adequate osmotic thrust for the propulsion. In contrast, for the situations with a + b ≠ c + d, the particle can exhibit propulsion even without any difference in net-diffusivities of the reactants and products. The direction and speed of the motion are dependent on difference in mass diffusivities and reaction rate constants at different surfaces.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号